
Neuroimaging Article Reexecution and Repro-
duction Assesment System
Horea-Ioan Ioanas1 Austin Macdonald1 Yaroslav O. Halchenko1
1Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College

Abstract — The value of research articles is increas-1

ingly contingent on the results of complex data ana-2

lyses which substantiate their claims. Compared to data3

production, data analysis more readily lends itself to a4

higher standard of both full transparency and repeated5

operator-independent execution. This higher standard6

can be approached via fully reexecutable research out-7

puts, which contain the entire instruction set for end-8

to-end generation of an entire article solely from the9

earliest feasible provenance point, in a programatically10

executable format. In this study, we make use of a peer-11

reviewed neuroimaging article which provides complete12

but fragile reexecution instructions, as a starting point to13

formulate a new reexecution system which is both robust14

and portable. We render this system modular as a core15

design aspect, so that reexecutable article code, data,16

and environment specifications could potentially be sub-17

stituted or adapted. In conjunction with this system,18

which forms the demonstrative product of this study,19

we detail the core challenges with full article reexecution20

and specify a number of best practices which permitted21

us to mitigate them. We further show how the capabil-22

ities of our system can subsequently be used to provide23

reproducibility assessments, both via simple statistical24

metrics and by visually highlighting divergent elements25

for human inspection. We argue that fully reexecut-26

able articles are thus a feasible best practice, which can27

greatly enhance the understanding of data analysis vari-28

ability and the trust in results. Lastly, we comment at29

length on the outlook for reexecutable research outputs30

and encourage re-use and derivation of the system pro-31

duced herein.32

Background33

Reexecutable Research34

Independent verification of published results is a cru-35

cial step for establishing and maintaining trust in36

shared scientific understanding [5]. The basic feas-37

ibility of de novo research output generation from the38

earliest recorded data provenance is known as reex-39

ecutability, and has remained largely unexplored as40

distinct phenomenon in the broader sphere of research41

reproducibility. While the scope of reexecution is nar-42

rower than that of reproduction, it constitutes a more43

well-defined and therefore tractable issue in improv- 44

ing the quality and sustainability of research. In all 45

cases, reexecutability increases the feasibility of re- 46

production assessments. Further, in the case of com- 47

plex analysis processes with vast parameter spaces, 48

reexecutability is a prerequisite for detailed reprodu- 49

cibility assessments. Lastly, reexecution constitutes a 50

capability in and of itself, with ample utility in edu- 51

cation, training, and resource reuse for novel research 52

purposes (colloquially, “hacking”) — which may ac- 53

crue even in the absence of accurate result reproduc- 54

tion. 55

Free and Open Source Software [27] has signific- 56

antly permeated the world of research, and it is 57

presently not uncommon for researchers to publish 58

part of the analysis instructions used in generating 59

published results under free and open licenses. How- 60

ever, such analysis instructions are commonly discon- 61

nected from the research output document, which is 62

manually constructed from static inputs. Notably, 63

without fully reexecutable instructions, data analysis 64

outputs and the positive claims which they support 65

are not verifiably linked to the methods which gener- 66

ate them. 67

Reexecutability is an emergent topic in research, 68

with a few extant efforts attempting to provide solu- 69

tions and tackle associated challenges. Such efforts 70

stem both from journals and independent research- 71

ers interested in the capabilities which reexecutable 72

research processes offer to the ongoing development 73

of their work. Among these, an effort by the eLife 74

journal [24] provides dynamic article figures based 75

on the top-most data processing output and execut- 76

able code conforming to journal standards. Neur- 77

oLibre [23] provides a Jupyter Notebook based online 78

platform for publishing executable books along with a 79

selection of reexecutability assets, namely code, data, 80

and a reexecution runtime. Independent researcher 81

efforts offer more comprehensive and flexible solu- 82

tions, yet provide reference implementations which 83

are either applied to comparatively simple analysis 84

processes [7] or tackle complex processes, but assume 85

environment management capabilities which may not 86

be widespread [14]. 87

In order to optimally leverage extant efforts per- 88

taining to full article reexecution and in order to test 89

2024-01-19 Page 1 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

reexecutability in the face of high task complexity,90

we have selected a novel neuroimaging study, identi-91

fied as OPFVTA based on author naming conventions92

[16]. The 2022 article is accompanied by a program-93

matic workflow via which it can be fully regenerated94

— based solely on raw data, data analysis instruc-95

tions, and the natural-language manuscript text —96

and which is initiated via a simple executable script97

in the ubiquitous GNU Bash [26] command language.98

The reexecution process in this effort relies on an99

emerging infrastructure approach, RepSeP [14], also100

in use by other articles, thus providing a larger scope101

for conclusions that can be drawn from its study.102

Data Analysis103

One of the hallmarks of scientific data analysis is its104

intricacy — resulting from the manifold confounds105

which need to be accounted for, as well as from the106

breadth of questions which researchers may want to107

address. Data analysis can be subdivided into data108

preprocessing and data evaluation. The former con-109

sists of data cleaning, reformatting, standardization,110

and sundry processes which aim to make data suit-111

able for evaluation. Data evaluation consists of vari-112

ous types of statistical modeling, commonly applied113

in sequence at various hierarchical steps.114

The OPFVTA article, which this study uses as115

an example, primarily studies effective connectivity,116

which is resolved via stimulus-evoked neuroimaging117

analysis. The stimulus-evoked paradigm is wide-118

spread across the field of neuroimaging, and thus the119

data analysis workflow (both in terms of data pro-120

cessing and data evaluation) provides significant ana-121

logy to numerous other studies. The data evaluation122

step for this sort of study is subdivided into “level123

one” (i.e. within-subject) analysis, and “level two”124

(i.e. across-subject) analysis, with the results of the125

latter being further reusable for higher-level analyses126

[8]. In the simplest terms, these steps represent iterat-127

ive applications of General Linear Modeling (GLM),128

at increasingly higher orders of abstraction.129

Computationally, in the case of the OPFVTA art-130

icle as well as the general case, the various data ana-131

lysis workflow steps are sharply distinguished by their132

time cost. By far the most expensive element is a133

substage of data preprocessing known as registration.134

This commonly relies on iterative gradient descent135

and can additionally require high-density sampling136

depending on the feature density of the data. The137

second most costly step is the first-level GLM, the cost138

of which emerges from to the high number of voxels139

modeled individually for each subject and session.140

The impact of these time costs on reexecution is141

that rapid-feedback development and debugging can142

be stifled if the reexecution is monolithic. While as-143

certaining the effect of changes in registration instruc-144

tions on the final result unavoidably necessitate the145

reexecution of registration and all subsequent steps146

— editing natural-language commentary in the art-147

icle text, or adapting figure styles, should not. To 148

this end the reference article employs a hierarchical 149

Bash-script structure, consisting of two steps. The 150

first step, consisting in data preprocessing and all 151

data evaluation steps which operate in voxel space, is 152

handled by one dedicated sub-script. The second step 153

handles document-specific element generation, i.e. in- 154

line statistics, figure, and TeX-based article gener- 155

ation. The nomenclature to distinguish these two 156

phases introduced by the authors is “low-iteration” 157

and “high-iteration”, respectively [14]. 158

Analysis dependency tracking — i.e. monitoring 159

whether files required for the next hierarchical step 160

have changed, and thus whether that step needs to 161

be reexecuted — is handled for the high-iteration ana- 162

lysis script via the RepSeP infrastructure, but not for 163

the low-iteration script. 164

Software Dependency Management 165

Beyond the hierarchically chained data dependencies, 166

which can be considered internal to the study work- 167

flow, any data analysis workflow has additional de- 168

pendencies in the form of software. This refers to 169

the computational tools leveraged by the workflow 170

— which, given the diversity of research applications, 171

may encompass numerous pieces of software. Addi- 172

tionally, individual software dependencies commonly 173

come with their own software dependencies, which 174

may in turn have further dependencies, and so on. 175

The resulting network of prerequisites is known as a 176

“dependency graph”, and its resolution is commonly 177

handled by a package manager. 178

The OPFVTA article in its original form relies on 179

Portage [2], the package manager of the Gentoo Linux 180

distribution. This package manager offers integration 181

across programming languages, source-based pack- 182

age installation, and wide-ranging support for neur- 183

oscience software [15]. As such, the dependencies of 184

the target article itself are summarized in a stand- 185

ardized format, which is called an ebuild — as if it 186

were any other piece of software. This format is ana- 187

logous to the format used to specify dependencies at 188

all further hierarchical levels in the dependency tree. 189

This affords a homogeneous environment for depend- 190

ency resolution, as specified by the Package Manager 191

Standard [4]. Additionally, the reference article con- 192

textualizes its raw data resource as a dependency, in- 193

tegrating data provision in the same network as soft- 194

ware provision. 195

While the top-level ebuild (i.e. the direct software 196

dependency requirements of the workflow) is included 197

in the article repository and distributed alongside it, 198

the ebuilds which specify dependencies further down 199

the tree are all distributed via separate repositor- 200

ies. These repositories are version controlled, meaning 201

that their state at any time point is documented, and 202

they can thus be restored to represent the environ- 203

ment as it would have been generated at any point in 204

the past. 205

2024-01-19 Page 2 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

Software Dependencies206

The aforementioned infrastructure is relied upon to207

provide a full set of widely adopted neuroimaging208

tools, including but not limited to ANTs [3], nipype209

[9], FSL [22], AFNI [6], and nilearn [1]. Nipype in210

particular provides workflow management tools, ren-211

dering the individual sub-steps of the data analysis212

process open to introspection and isolated reexecu-213

tion. Additionally, the OPFVTA study employs a214

higher-level workflow package, SAMRI [19, 21], which215

provides workflows optimized for the preprocessing216

and evaluation of animal neuroimaging data.217

Containers218

Operating system virtualization is a process whereby219

an ephemeral “guest” environment is started in and220

may be reused between persistent “host” systems.221

Virtual machines (VMs), as these “guest” environ-222

ments are called, can thus provide users with envir-223

onments tailored to a workflow, while eschewing the224

need to otherwise (e.g. manually or via a package225

manager) provide the tools it requires. Once run-226

ning, VMs are self-contained and isolated from the227

host, also eliminating the risk of unwanted persistent228

changes being made to the host environment. Perhaps229

the most important benefit of virtual isolation is sig-230

nificantly improved security, allowing system admin-231

istrators to safely grant users relatively unrestricted232

access to large-scale computational capabilities. How-233

ever, VMs can also help mitigate issues arising from234

package updates by locking a specific dependency res-235

olution state which is known to work as required by a236

workflow, and distributing that instead of a top-level237

dependency specification which might resolve differ-238

ently across time.239

Modern advances in container technology allow the240

provision of the core benefits of system virtualization,241

but lighten the associated overhead by making limited242

use of the host system, specifically the hypervisor.243

Container technology is widespread in industry ap-244

plications, and many container images are made avail-245

able via public image repositories. While container246

technology has gained significant popularity specific-247

ally via the Docker toolset, it refers to an overarching248

effort by numerous organizations, now best represen-249

ted via a Linux Foundation project, the “Open Con-250

tainer Initiative” (OCI). The OCI governing body has251

produced an open specification for containers, which252

can be used by various container runtimes and tool-253

sets. Generally, OCI-compliant container images can254

be executed analogously with Docker, Podman, or255

other OCI compliant tools.256

While OCI images are nearly ubiquitous in the257

software industry, Singularity (recently renamed to258

Apptainer) is a toolset that was developed specifically259

for high-performance computing (HPC) and tailored260

to research environments. A significant adaptation of261

Singularity to HPC environments is its capability to262

run without root privileges. However, recent advances 263

in container technology have provided similar capab- 264

ilities. Further, Singularity permits the conversion of 265

OCI images into Singularity images, and recent ver- 266

sions of Apptainer have also added support for nat- 267

ively running OCI containers — thus making reuse 268

of images between the two technologies increasingly 269

convenient. 270

Container technology thus represents a solution to 271

providing stable reusable environments for complex 272

processes, such as the automatic generation of re- 273

search articles. In particular, containers provide a 274

convenient way of making advanced package manage- 275

ment solutions — as seen in the original OPFVTA 276

article — available to users which may lack them on 277

their host systems. 278

Results 279

Repository Structure 280

In order to improve the reexecution reliability of the 281

OPVFTA article we have constructed a parent repos- 282

itory which leverages Git and DataLad to link all reex- 283

ecution requirements. This framework uses Git sub- 284

modules for resource referencing, and DataLad [10] in 285

order to permit Git integration with data resources. 286

These submodules include the original article, the 287

raw data it operates on, and a reference mouse brain 288

templates package. Additionally, the top-level repos- 289

itory directly tracks the code required to coordinate 290

the OPFVTA article reexecution and subsequent gen- 291

eration of this article. The code unique to the reex- 292

ecution framework consists of container image gen- 293

eration and container execution instructions, as well 294

as a Make system for process coordination (fig. 1). 295

This repository structure enhances the original ref- 296

erence article by directly linking the data at the re- 297

pository level, as opposed to relying on its installa- 298

tion via a package manager. Notably, however, the 299

article source code itself is not duplicated or further 300

edited here, but handled as a Git submodule, with 301

all proposed improvements being recorded in the ori- 302

ginal upstream repository. The layout constructed for 303

this study thus provides robust provenance tracking 304

and constitutes an implementation of the YODA prin- 305

ciples (a recursive acronym for “YODAs Organigram 306

on Data Analysis” [12]). 307

The Make system is structured into a top-level 308

Makefile, which can be used for container image re- 309

generation and upload, article reexecution in a con- 310

tainerized environment, and meta-article production. 311

There are independent entry points for both this and 312

the original article — making both articles reexecut- 313

able (fig. 2). Versioning of the original article reexe- 314

cution is done via file names (as seen in the outputs/ 315

subdirectories of fig. 1) in order to preserve shell ac- 316

cessibility to what are equivalent resources. Version- 317

ing of the meta-article is handled via Git, so that the 318

2024-01-19 Page 3 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

most recent version of the work is unambiguously ex-319

posed.320

The meta-article targets redirect to a Makefile in321

the article/ subdirectory, which contains this doc-322

ument’s human-readable text in TEX format, along-323

side scripts for generating dynamical elements based324

on the reexecution results seen in the outputs/325

directory. The original article reexecution is326

provided by two alternative targets, using either the327

Open Container Initiative standard, or Singularity.328

Both original article reexecution targets wrap the329

produce_analysis.sh script, which is a thin compat-330

ibility layer accessing the Make system of the original331

article. This alternative is introduced in order to as-332

sess feasibility as well as potential variability across333

virtualization infrastructures.334

Resource Refinement335

As a notable step in our article reproduction effort, we336

have updated resources previously only available as337

tarballs (i.e. compressed tar archives), to DataLad.338

This refinement affords both the possibility to cherry-339

pick only required data files from the data archive340

(as opposed to requiring a full archive download), as341

well as more fine-grained version tracking capabilit-342

ies. In particular, our work encompassed a re-write343

of the Mouse Brain Templates package [18] Make sys-344

tem. In its new release [20], developed as part of this345

study, Mouse Brain Templates now publishes tarballs,346

as well as DataLad-accessible unarchived individual347

template files.348

Best Practice Guidelines349

As part of this work we have contributed substantial350

changes to the original OPFVTA repository, based351

on which we formulate a number of best practice352

guidelines, highly relevant in the production of reex-353

ecutable research outputs.354

Errors should be fatal more often than not.355

By default, programs written in the majority of lan-356

guages (including e.g. Python and C) will exit imme-357

diately when running into an unexpected operation.358

The POSIX shell and other similar or derived shells,359

such as Bash and Zsh, behave differently. Their de-360

fault is to continue with execution of the next scripted361

command, and only exit with a non-zero code when362

the list of commands is exhausted or the exit com-363

mand is called explicitly. As a result, an execution364

of the script could continue for hours before it fails,365

and the original error message might be lost in the366

flood of output, making it hard or impossible to loc-367

alize and address the original problem. This beha-368

vior can be mitigated by prepending set -e to the369

respective shell script, which changes the default be-370

havior so that execution is stopped as soon as a com-371

mand exits with an error code. Additionally, shell372

scripts treat undefined variables as a variable having373

an empty value, with empty values causing no errors.374

This can lead to numerous ill-defined behaviors, in- 375

cluding a command such as rm -rf "$PREFIX/" re- 376

moving all files on the system if PREFIX is not defined. 377

This can be addressed by prepending set -u so that 378

an error is raised and execution is stopped as soon as 379

an undefined variable is referenced. To summarize, 380

we recommend including set -eu at the top of every 381

shell script to guarantee it exits as soon as any com- 382

mand fails or an undefined variable is encountered. 383

This is in line with the “Fail Early” principle advoc- 384

ated in the ReproNim Reproducible Basics Module 385

[11]. 386

Avoid assuming or hard-coding absolute paths to resources. 387

Ensuring layout compatibility in different article reex- 388

ecution environments is contingent on processes being 389

able to find required code or data. Absolute paths, 390

which are hard-coded into scripts, are likely to not ex- 391

ist anywhere but the original execution environment, 392

rendering the scripts non-portable. This problem is 393

best avoided by adhering to YODA principle [12] of 394

being able to reference all needed resources (data, 395

scripts, container images, etc.) under the study dir- 396

ectory. Use of relative paths within the study scripts 397

consequently improve their portability. Paths to ex- 398

ternal resources (scratch directories or reusable re- 399

sources such as atlases) should additionally be para- 400

meterized so that they can be controlled via command 401

line options or environment variables. 402

Avoid assuming a directory context for execution. 403

As previously recommended, resources may be linked 404

via relative paths, which are resolved based on their 405

hierarchical location with the respect to the execution 406

base path. However, scripts could be executed from 407

various locations and not necessarily from the location 408

of the script, thus rendering relative paths fragile. A 409

good way of making script execution more robust is 410

ensuring that they set base execution directories to 411

their respective parent directories. This can be ac- 412

complished in POSIX shell scripts by prepending cd 413

"$(dirname "$0")". 414

Workflow granularity greatly benefits efficiency. 415

The high time cost of executing a full analysis work- 416

flow given contemporary research complexity and 417

technical capabilities makes debugging errors very 418

time-consuming. Ideally, it should not be neces- 419

sary to reexecute the entire workflow for every po- 420

tentially resolved error. It is thus beneficial to seg- 421

ment the workflow into self-contained steps, which can 422

be executed and inspected independently. Workflows 423

should as a minimum separate such large steps as 424

preprocessing, individual levels of analysis (e.g. per- 425

subject vs. whole-population), and article generation. 426

One way to integrate such steps is to formulate a 427

workflow which automatically checks for the presence 428

of results from prior stages, and, if present, proceeds 429

to the next stage without triggering prior processes. 430

This property is known as itempotence and is again 431

2024-01-19 Page 4 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

opfvta-reexecution/

code/

images/ opfvta/

inputs/

mouse-brain-templates/opfvta_bidsdata/

outputs/

original/ <env>_<date>/

publishing/

 Makefile

produce-analysis.sh

 ...

 Makefile

 Containerfile ...

Containerflie.latex

 ... article.pdf

 ...

 article.pdf article.pdf

Figure 1: The directory topology of the new reexecution system nests all resources and includes a Make system for
process coordination. Depicted is the directory tree topology of the repository coordinating OPFVTA reexecution. Nested
directories are represented by nested boxes, and Git submodules are highlighted in orange. The article reexecution PDF results
are highlighted in light green, and the PDF of the resulting meta-article (i.e. this article) is highlighted in light blue.

Target Fetching Execution Result

Original Article Article System Image

 Raw Data

 Article Code

 Meta-Article Article Reexecution Library

Meta-Article System Image

Article Execution

Meta-Poster Code

Meta-Article Code

Reexecuted Article (PDF)

 Meta-Poster (PDF)

 Meta-Article (PDF)

Figure 2: The reexecution system encompasses both the Original Article and Meta-Article as independent Make
targets. Depicted is the reexecution system workflow, with two reexecution entry points, the “Original Article and the “Meta-
Article” (i.e. this article, which also performs the reproduction assessment). Notably, for the generation of the meta-article,
the Original Article can be executed, or not — the meta-article will dynamically include all reexecution results which are
published, as well as all which are locally produced. The article reexecution PDF results are highlighted in light green, and the
PDF of the resulting meta-article (i.e. this article) is highlighted in light blue. Optional nodes (such as fetching a container
image for meta-article reexecution) are faded gray.

2024-01-19 Page 5 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

advocated by the YODA principles, and implemented432

in this article via both the Make system, as well as433

internally by the original article’s usage of NiPype.434

Container image size should be kept small.435

Due to a lack of persistency, addressing issues in con-436

tainer images requires an often time-consuming re-437

building process. One way to mitigate this is to make438

containers as small as possible. In particular, when439

using containers, it is advisable to not provide data440

via a package manager or via manual download inside441

the build script. Instead, data provisioning should be442

handled outside of the container image and resources443

should be bind-mounted after download to a persist-444

ent location on the host machine.445

Resources should be bundled into a superdataset.446

As external resources might change, it is beneficial447

to use data version control system, such as git-annex448

and DataLad. The git submodule mechanism permits449

bundling multiple repositories with clear provenance450

and versioning information, thus following the mod-451

ularity principle promoted by YODA. Moreover, git-452

annex supports multiple data sources and data integ-453

rity verification, thus increasing the reliability of a454

resource in view of providers potentially removing its455

availability.456

Containers should fit the scope of the underlying workflow457

steps.458

In order to constrain the workload of rebuilding a con-459

tainer image, it is advisable to not create a bundled460

container image for sufficiently self-contained sub-461

steps of the workflow. For example, as seen in this462

study, the article reexecution container image should463

be distinct from container images required for produ-464

cing a summary meta-article. Conversely, if sub-steps465

share toolkit requirements, containers can be re-used466

between different steps by leveraging different entry467

points to the same target.468

Do not write debug-relevant data inside the container.469

Debug-relevant data, such as intermediary data pro-470

cessing steps and debugging logs should not be deleted471

by the workflow or written to an ephemeral location472

inside the container, but should instead be written to473

persistent storage. When using some container tech-474

nologies, such as Docker, files written to hard-coded475

paths will disappear once the container is removed.476

As numerous workflow files beyond the main data out-477

put may be relevant for debugging, they should not478

be lost. In order to achieve this, intermediary and de-479

bugging outputs should be written to paths which are480

bind-mounted to persistent directories on the parent481

system, from which they can be freely inspected.482

Scratch directories should be parameterized.483

Complex workflows commonly generate large amounts484

of scratch data — intermediary data processing steps,485

whose main utility is being read by subsequent steps486

or consulted for debugging. If these data are writ-487

ten to the same hard-coded path on the host sys-488

tem, multiple reexecutions will lead to race condi- 489

tions, compromising one or multiple instances of the 490

process. This can be avoided by parameterizing the 491

path and/or setting a default value based on a unique 492

string (e.g. generated from the timestamp). When 493

using containers, this should be done at the container 494

instantiation level, as the relevant path for such po- 495

tential conflicts is the path on the parent system, and 496

not the path inside the container. 497

Dependency versions inside container environments should 498

be frozen as soon as feasible. 499

The need for full image rebuilding means that assur- 500

ing consistent functionality in view of frequent up- 501

dates is more difficult for containers than interact- 502

ively managed environments. This is compounded by 503

the frequent and often API-breaking releases of many 504

scientific software packages. While dependency ver- 505

sion freezing is not without cost in terms of assuring 506

continued real-life functionality for an article, it can 507

aid stable re-execution if this is done as soon as all re- 508

quired processing capabilities are provided. How this 509

is accomplished differs greatly based on the package 510

manager used inside the container. Gentoo’s Port- 511

age package manager allows freezing versions both 512

explicitly, or — as done in this study — by check- 513

ing out a specific commit of the dependency tree, in 514

view of which the package manager will resolve the 515

same versions. Other distributions (such as Debian 516

and Neurodebian), or language-specific package man- 517

agers (such as Python’s pip), provide analogous func- 518

tionality, via e.g. nd_freeze or pip freeze, respect- 519

ively. 520

Reproduction Quality 521

As a top-level view of reexecution results we have pro- 522

duced a simple infrastructure to analyze reproduc- 523

tion quality. This provides both quality control for 524

successful reexecution as well as a showcase of how 525

automatic article reexecutability can be leveraged to 526

evaluate reproducibility at a glance. 527

For this purpose we compare the difference between 528

the Historical Manuscript Record — a product of the 529

original executable article generation — and multiple 530

results generated via the new reexecution system. Re- 531

production differences between the article versions are 532

extracted by evaluating rasterized page-wise PDF dif- 533

ferences (fig. 3). 534

This overview shows a consistent minimum baseline 535

of differing pixels between reexecutions, around 10−4 536

(i.e. 0.01 %), best seen in pages 6 to 10. When ex- 537

amined closely (fig. 4a), this difference corresponds to 538

the modified date of the Historical Manuscript Record 539

(2022-07-25) and the new reexecution system results 540

(2023-..). While otherwise inconsequential, this dif- 541

ference provides a good litmus test for whether the 542

article was indeed reexecuted or simply preserved, 543

and should be expected throughout all comparisons. 544

Throughout other pages we see difference percentages 545

2024-01-19 Page 6 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Page

10 4

10 3

10 2

10 1

Di
ffe

rin
g

Pi
xe

ls
Pr

op
or

tio
n

Environment
Podman
Singularity

Figure 3: Page-wise visual differences between the Historical Manuscript Record and new reexecution system outputs
help identify overall reproduction fidelity, and identify pages with noteworthy differences. Depicted are rasterized
document differences, weighted 1 for changes in any pixel color channel, and rounded to four decimal points. Error bars
represent the 95th percentile confidence interval.

2024-01-19 Page 7 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

which are broadly consistent across reexecutions and546

environments, but vary from page to page over almost547

2 degrees of magnitude. Upon inspection, more vari-548

able but comparatively lower-percentage differences549

(pages 4 and 5, detail depicted in fig. 4b) are re-550

vealed as text differences. This is caused by the tar-551

get article being fully reexecuted, including the reex-552

ecution of inline statistic summaries (e.g. p and F-553

values). Higher-percentage differences (detail depic-554

ted in fig. 4c) correspond to dynamically generated555

data figures, in which the high variability of non-556

deterministic preprocessing results in changes to the557

majority of figure pixels.558

Notably, inspecting these differences reveals a559

strong coherence at the qualitative evaluation level in560

spite of high quantitative variability. This coherence561

manifests in the statements from the original article562

remaining valid with regard to statistical summar-563

ies which emerge from de novo data processing (as564

seen in 4b, 4c). This is particularly true for p-values,565

the magnitude of which can vary substantially at the566

lower tail of the distribution without impacting qual-567

itative statements.568

Further, we find that text differences are well loc-569

alized, as a function of the original article implement-570

ing fixed decimal rounding and magnitude notation571

for statistical outputs (fig. 4). Thus, changes in in-572

line statistic values do not impact text length and do573

not generally propagate to subsequent lines via word574

shifts, where they would be recorded as false positives.575

2024-01-19 Page 8 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

(a) The date change is correctly identified throughout the document, as seen in this example from page 1 of the article.

(b) Statistical summary values change, but maintain qualitative evaluation brackets with respect to e.g. p-value thresholds, as seen in
this example from page 4 of the article.

(c) In regression analysis, data points are highly variable, the slope and significance remain constant, as seen in this example from page
14 of the article.

Figure 4: The article differences showcase expected quantitative and metadata variability, while maintaining overall
validity of qualitative statements. The figures are extracted from a full article diff, with tinted highlighting (blue for the
Historical Manuscript Record, and orange for the new reexecution system result).

2024-01-19 Page 9 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

Methods576

Data Acquisition577

No new animal data was recorded. The data form-578

ing the substrate for the reproduction analysis was579

produced by extracting the output article.pdf files580

from iterative reexecutions of the original article code.581

Computing Environments582

Article reexecution was performed on a Debian 6.1.8-583

1 (2023-01-29) system using the x86_64 architecture,584

inside containers handled by Podman version 4.3.1585

and Singularity version 3.10.3. Git version 2.39.2586

and DataLad version 0.19.2 were used for data and587

code orchestration. The top-level make targets were588

executed via Bash version 5.2.15.589

Data Sources590

The raw data for the article was sourced in BIDS form591

from Zenodo, an open data repository, via the identi-592

fier specified by the original publication [17]. Mouse593

brain templates were sourced via a Git repository,594

“Mouse Brain Templates”, which was updated as part595

of this study to allow individual file fetching [20].596

Discussion597

In this article and its accompanying source code [13]598

we present an automated workflow for full, end-to-599

end article reexecution. We generate the full research600

communication output (including inline statistics, fig-601

ures, and brain maps) from solely the raw data and602

automatically executable code. This work substanti-603

ates the feasibility of article reexecution as a process,604

based on a real-life peer-reviewed study example. To605

this end, we also detail important and transferable606

principles, and document common pitfalls in creating607

a reexecution workflow. Lastly, we leverage the cap-608

abilities of this reexecution system in order to provide609

a simple reproducibility assessment, showcasing the610

relevance of reexecutable research outputs for invest-611

igating reproducibility.612

Reexecutability613

We argue that reexecutability is a core aspect of re-614

liable research output creation. Reexecutability im-615

plies that instructions are formulated in such a way616

that they can be automatically deployed without hu-617

man operator bias. In contrast to arbitrary reporting618

standards, the property of reexecutability implicitly619

guarantees that required instructions are fully recor-620

ded.621

We demonstrate the feasibility of full research out-622

put reexecution by integrating cutting-edge technolo-623

gical capabilities, and publish all resources for open624

access, inspection, re-use, and adaptation. The article625

reexecution system which we produced isolates data626

and original resources, and does not make assump-627

tions about the internal structure of a reexecutable 628

article, and is of course, not domain-specific. Our sys- 629

tem initiates article execution via a Bash entry point, 630

meaning it itself is programmatically accessible for in- 631

tegration into higher-order reexecutable research. We 632

demonstrate the feasibility of this by integrating the 633

original article reexecution with the reexecution of 634

the meta-article. Dependency resolution for the ori- 635

ginal article is provided via an ebuild-style specifica- 636

tion present in the original article code. This means 637

that its dependencies are resolved seamlessly with all 638

lower-level dependencies, and could be resolved seam- 639

lessly with higher-order dependencies making use of 640

the reexecutable article as a piece of software. 641

We sharply distinguish between reexecutability and 642

reproducibility. The former refers to the capability of 643

producing an analogue research output from the same 644

data through automatic execution of data analysis. 645

The latter refers to the coherence between an analogue 646

research output (whether automatically reexecuted or 647

manually recreated) and an original research finding. 648

We further distinguish those two terms from replic- 649

ability, which describes an identical reproduction of a 650

finding. 651

Reproducibility 652

We supplement the reexecution workflow description 653

of this article with a brief demonstration of how it 654

can be used to provide a reproducibility assesment. 655

For this purpose we use a difference computation tool 656

(in computational contexts known simply as “diff”) 657

which summarizes and visually displays mismatches 658

between a historical manuscript record and multiple 659

reexecutions over various environments. Such a pro- 660

cess makes mismatches visible at-a-glance throughout 661

the article figures and text, rendering them easy to 662

locate and interpret via human inspection. 663

Based on these results we lay out a few key findings 664

for further reproducibility assessments. In particu- 665

lar, we notice that figures which directly map output 666

data are highly — and to a consistent extent — vari- 667

able across multiple reexecution attempts. However, 668

in as far as such figures are accompanied by statistical 669

evaluations, we find these to be qualitatively consist- 670

ent. This indicates that reproduction quality is not 671

only reliant on whether or not data processing is de- 672

terministic, but also on which aspects of the top-level 673

data the authors seek to highlight. While the above 674

observations describe the current article specifically, 675

we suspect that they may reflect a phenomenon of 676

broader relevance. 677

In neuroimaging workflows, the most notorious 678

source for non-deterministic data analysis behavior 679

is the registration. This process commonly operates 680

via a random starting point — specified by a seed 681

value — and iterates according to a gradient descent 682

algorithm. While the toolkit used by the article reex- 683

ecuted here allows the specification of a particular 684

seed, this was not done for the Historical Manuscript 685

2024-01-19 Page 10 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

Record, nor is it a feature commonly used by oper-686

ators. In light of our results, the question emerges687

whether or not seed specification should be introduced688

as a best practice. While a fixed seed would aid in689

numerical reproducibility, it is possible that a specific690

seed — whether by coincidence or ex post facto selec-691

tion — may result in anomalous conclusions. It may692

then be that a stronger finding is one which is statist-693

ically robust with respect to preprocessing variability,694

even if this comes at the cost of compromising nu-695

merical replicability. Conversely, it could be argued696

that reproduction analysis can be better targeted and697

more concise, if seed values were fixed to universally698

accepted numbers (analogous to the usage of nothing-699

up-my-sleeve numbers in cryptography).700

Challenges701

For this meta-article we have selected an original702

neuroimaging article which already published all of703

the instructions needed to reproduce it in its entirety704

from raw data and automatically executable instruc-705

tions. Even in light of this uncommon advantage,706

setting up a portable reexecution system has proven707

to be an ample effort.708

Difficulties arose primarily due to the instability709

of the software stack. It is common (and increas-710

ingly so as researchers become involved in software711

development) for scientific software to be subjected712

to frequent interface changes and loss of support for713

older dependency versions. In this article we pro-714

pose version-frozen container technology as a mit-715

igation method for such fragility. However, this is716

not without draw-backs, as it can make introspection717

more challenging. In view of this, we defined inter-718

active container entry points (make targets), whereby719

the user may enter the container dedicated to auto-720

matic reexecution to inspect and test changes in the721

environment. Even so, on account of these contain-722

ers being dedicated to automatic execution, features723

such as an advanced text processor are missing, and724

the inclusion of such features may not be ultimately725

desired.726

A more easily surmountable challenge was data727

management. Whereas the original article strove to728

integrate all provision of computational requirements729

with the package manager, the usage of containers730

made the cost of this all-encompassing solution pro-731

hibitive. As such, Git submodules and DataLad were732

used, providing enhanced functionality for e.g. data733

version specification, but at the cost of spreading re-734

quirements provision over different technologies.735

Lastly, an unavoidable challenge consisted in exe-736

cution time-cost. While not prohibitive, the time cost737

not only slows iterative development work, but pres-738

ages a potential decrease in the feasibility of reexecu-739

tion given the trend towards larger and larger data.740

This means that process complexity and experimental741

data size may need to be evaluated in light of the742

diminished accessibility to such processes as reexecu- 743

tion. 744

Outlook 745

We propose a few key considerations for the fur- 746

ther development of article reexecution — though we 747

note that practical reuse of this system might identify 748

promising enhancements better than theoretical ana- 749

lysis. 750

In particular, we find that reexecutable article de- 751

bugging in a container environment can be a signific- 752

ant challenge, and one which will only be more severe 753

if such an environment is already implemented in the 754

development phase of an article. In order to provide 755

seamless integration of both flexible development and 756

portable reexecution, we envision a workflow system 757

which, for each analysis step, permits either usage of 758

locally present executables, or entry points to a con- 759

tainer. These two approaches may also be integrated 760

by bind-mount overloading of container components 761

with their local counterparts. We implement a ver- 762

sion of this concept for the meta-article generation, 763

where the make article target which generates this 764

article will use the local environment, and the make 765

container-article target executes the same code 766

via an entry point to a TEX container. 767

The reproduction quality assessment methods 768

provided in this study serve as a starting point for as- 769

sessing full article reexecution. We argue that for the 770

reproducibility assessment of a specific article, there 771

is currently no substitute for the human-readable art- 772

icle as the foremost output element, as it most ac- 773

curately documents all variable elements in the con- 774

text of the statements they underpin. However, it 775

should be noted that crude pixel-diff comparison, as 776

showcased here, cannot provide automatic evaluation 777

of differences (i.e. determining whether or not stat- 778

istical thresholds have been crossed) — so machine- 779

readable outputs are necessary for numerical compar- 780

isons. There are ongoing efforts, such as NIDM [25], 781

to establish a framework and language for describ- 782

ing numerical results in neuroimaging. This requires 783

custom tooling to export result descriptors in a lan- 784

guage aiming to approximate — but distinct from — 785

human readable commentary, and was not yet im- 786

plemented in our analysis workflow. There are also 787

supplementary outputs which may provide additional 788

capabilities, not in lieu of, but in addition to the art- 789

icle text. The foremost among these — specifically 790

pertaining to neuroimaging — are statistical brain 791

maps. Such supplementary data would not only let 792

studies generate reusable outputs, but would also aid 793

the inspection of the original article. Our workflow 794

produces and records all of the top-level data (stat- 795

istical maps, data tables, etc.) from which the art- 796

icle extracts elements relevant to its statements. We 797

have uploaded the main statistical map of reexecution 798

results to NeuroVault, and are working to provide a 799

corresponding template for our mouse brain data. In- 800

2024-01-19 Page 11 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

tegration between the present reexecutable article sys-801

tem and statistical map libraries is thus a promising802

endeavor for further development.803

Lastly, we highlight the relevance of reexecutable804

articles for reuse and adaptation. Their key strength805

is that they can easily be derived based on a reliable806

starting point with respect to successful process exe-807

cution. This pertains not only to reuse of reexecutable808

article code for novel or derived studies, but also reuse809

for the inspection of specific parameter or data modi-810

fications. In view of this we recommend a practical811

approach to the work described herein [13], whereby812

the parent reexecution system repository can be con-813

sidered immediately and freely available for inspec-814

tion, personal exploration, and re-use by the reader.815

Acknowledgement816

This work was supposed by NIH grants817

1R24MH117295 (DANDI: Distributed Archives818

for Neurophysiology Data Integration) and819

2P41EB019936-06A1 (ReproNim: A Center for820

Reproducible Neuroimaging Computation).821

References822

[1] Alexandre Abraham et al. “Machine learning for823

neuroimaging with scikit-learn”. In: Frontiers824

in Neuroinformatics 8 (Feb. 2014). doi: 10.825

3389/fninf.2014.00014. url: https://doi.826

org/10.3389/fninf.2014.00014.827

[2] Guilherme Amadio and Benda Xu. “Portage:828

Bringing Hackers’ Wisdom to Science”. In:829

(2016). doi: 10 . 48550 / ARXIV . 1610 . 02742.830

url: https://arxiv.org/abs/1610.02742.831

[3] Brian B. Avants et al. “A reproducible eval-832

uation of ANTs similarity metric performance833

in brain image registration”. In: NeuroImage834

54.3 (Feb. 2011), pp. 2033–2044. doi: 10.1016/835

j . neuroimage . 2010 . 09 . 025. url: https :836

//doi.org/10.1016/j.neuroimage.2010.837

09.025.838

[4] Stephen P. Bennett et al. “Package Manager839

Specification”. English. In: (Apr. 2017). url:840

https://projects.gentoo.org/pms/6/pms.841

html.842

[5] Open Science Collaboration. “Estimating the843

reproducibility of psychological science”. In:844

Science 349.6251 (Aug. 2015). doi: https://845

doi.org/10.1126/science.aac4716.846

[6] Robert W Cox. “AFNI: software for analysis847

and visualization of functional magnetic reson-848

ance neuroimages”. In: Computers and Bio-849

medical research 29.3 (June 1996), pp. 162–850

173. doi: 10 . 1006 / cbmr . 1996 . 0014. url:851

https://www.sciencedirect.com/science/852

article/pii/S0010480996900142.853

[7] Asim H. Dar, Adina S. Wagner and Michael 854

Hanke. “REMoDNaV: Robust Eye-Movement 855

Classification for Dynamic Stimulation”. In: 856

(Apr. 2019). doi: 10 . 1101 / 619254. url: 857

https://doi.org/10.1101/619254. 858

[8] K.J. Friston et al. “Characterizing Evoked 859

Hemodynamics with fMRI”. In: NeuroImage 860

2.2 (June 1995), pp. 157–165. doi: 10.1006/ 861

nimg.1995.1018. url: https://doi.org/10. 862

1006/nimg.1995.1018. 863

[9] Krzysztof Gorgolewski et al. “Nipype: A Flex- 864

ible, Lightweight and Extensible Neuroimaging 865

Data Processing Framework in Python”. In: 866

Front. Neuroinform. 5 (2011). issn: 1662- 867

5196. doi: 10.3389/fninf.2011.00013. url: 868

http://dx.doi.org/10.3389/fninf.2011. 869

00013. 870

[10] Yaroslav Halchenko et al. DataLad: distrib- 871

uted system for joint management of 872

code, data, and their relationship. Vol. 6. 873

63. The Open Journal, July 2021, p. 3262. doi: 874

10.21105/joss.03262. url: https://doi. 875

org/10.21105/joss.03262. 876

[11] Yaroslav O. Halchenko et al. ReproNim 877

Reproducible Basics Module. 2021. url: 878

https : / / www . repronim . org / module - 879

reproducible-basics/. 880

[12] Michael Hanke et al. YODA: YODA’s or- 881

ganigram on data analysis. Poster presented 882

at the annual meeting of the Organization for 883

Human Brain Mapping, Singapore. 2018. eprint: 884

https://github.com/myyoda/poster/blob/ 885

master/ohbm2018.pdf. url: https://github. 886

com/myyoda/poster/blob/master/ohbm2018. 887

pdf. 888

[13] Horea-Ioan Ioanas, Austin Macdonald and 889

Yaroslav O. Halchenko. Neuroimaging Art- 890

icle Reexecution and Reproduction As- 891

sesment System. Apache License, verison 2.0. 892

2024. url: https://github.com/con/opfvta- 893

reexecution/releases/tag/1.20240119.0. 894

[14] Horea-Ioan Ioanas and Markus Rudin. “Repro- 895

ducible Self-Publishing for Python-Based Re- 896

search”. In: EuroSciPy, Aug. 2018. doi: 10 . 897

6084/m9.figshare.7247339.v1. url: https: 898

//figshare.com/articles/Reproducible_ 899

Self - Publishing _ for _ Python - Based _ 900

Research/7247339. 901

[15] Horea-Ioan Ioanas, Bechara Saab and Markus 902

Rudin. “Gentoo Linux for Neuroscience — a 903

replicable, flexible, scalable, rolling-release en- 904

vironment that provides direct access to devel- 905

opment software”. In: Research Ideas and 906

Outcomes 3 (Feb. 2017), e12095. doi: 10 . 907

3897/rio.3.e12095. url: https://doi.org/ 908

10.3897/rio.3.e12095. 909

[16] Horea-Ioan Ioanas, Bechara John Saab and 910

Markus Rudin. “A Whole-Brain Map and Assay 911

Parameter Analysis of Mouse VTA Dopaminer- 912

2024-01-19 Page 12 of 34

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.48550/ARXIV.1610.02742
https://arxiv.org/abs/1610.02742
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://projects.gentoo.org/pms/6/pms.html
https://projects.gentoo.org/pms/6/pms.html
https://projects.gentoo.org/pms/6/pms.html
https://doi.org/https://doi.org/10.1126/science.aac4716
https://doi.org/https://doi.org/10.1126/science.aac4716
https://doi.org/https://doi.org/10.1126/science.aac4716
https://doi.org/10.1006/cbmr.1996.0014
https://www.sciencedirect.com/science/article/pii/S0010480996900142
https://www.sciencedirect.com/science/article/pii/S0010480996900142
https://www.sciencedirect.com/science/article/pii/S0010480996900142
https://doi.org/10.1101/619254
https://doi.org/10.1101/619254
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.1006/nimg.1995.1018
https://doi.org/10.3389/fninf.2011.00013
http://dx.doi.org/10.3389/fninf.2011.00013
http://dx.doi.org/10.3389/fninf.2011.00013
http://dx.doi.org/10.3389/fninf.2011.00013
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262
https://doi.org/10.21105/joss.03262
https://www.repronim.org/module-reproducible-basics/
https://www.repronim.org/module-reproducible-basics/
https://www.repronim.org/module-reproducible-basics/
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/myyoda/poster/blob/master/ohbm2018.pdf
https://github.com/con/opfvta-reexecution/releases/tag/1.20240119.0
https://github.com/con/opfvta-reexecution/releases/tag/1.20240119.0
https://github.com/con/opfvta-reexecution/releases/tag/1.20240119.0
https://doi.org/10.6084/m9.figshare.7247339.v1
https://doi.org/10.6084/m9.figshare.7247339.v1
https://doi.org/10.6084/m9.figshare.7247339.v1
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://figshare.com/articles/Reproducible_Self-Publishing_for_Python-Based_Research/7247339
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.3897/rio.3.e12095
https://doi.org/10.3897/rio.3.e12095

Neuroimaging Article Reexecution and Reproduction Assesment System

gic Activation”. In: bioRxiv (Apr. 2020). doi:913

10.1101/2020.04.03.023648. eprint: https:914

//www.biorxiv.org/content/early/2020/915

04/04/2020.04.03.023648.full.pdf. url:916

https://www.biorxiv.org/content/early/917

2020/04/04/2020.04.03.023648.918

[17] Horea-Ioan Ioanas, Bechara John Saab and919

Markus Rudin. BIDS Data for ”A Whole-920

Brain Map and Assay Parameter Ana-921

lysis of Mouse VTA Dopaminergic Ac-922

tivation”. June 2019. doi: 10.5281/zenodo.923

3236930. url: https://doi.org/10.5281/924

zenodo.3236930.925

[18] Horea-Ioan Ioanas, Tina Segessemann and926

Markus Rudin. ”Mouse Brain Atlases”927

Generator Workflows. Version 0.5. Jan.928

2019. doi: 10 . 5281 / zenodo . 2545838. url:929

https://doi.org/10.5281/zenodo.2545838.930

[19] Horea-Ioan Ioanas et al. “An optimized regis-931

tration workflow and standard geometric space932

for small animal brain imaging”. In: 241 (Nov.933

2021), p. 118386. doi: 10.1016/j.neuroimage.934

2021 . 118386. url: https : / / doi . org / 10 .935

1016/j.neuroimage.2021.118386.936

[20] Horea-Ioan Ioanas et al. Mouse Brain Tem-937

plates — Generator Workflows and Data938

Links. Version 1.0. Jan. 2019. doi: 10.5281/939

zenodo.8214739. url: https://doi.org/10.940

5281/zenodo.8214739.941

[21] Horea-Ioan Ioanas et al. SAMRI — Small942

Animal Magnetic Resonance Imaging.943

Jan. 2019. doi: 10 . 5281 / zenodo . 3234918.944

url: https : / / doi . org / 10 . 5281 / zenodo .945

3234918.946

[22] Mark Jenkinson et al. “FSL”. eng. In:947

Neuroimage 62.2 (Aug. 2012), pp. 782–790.948

doi: 10.1016/j.neuroimage.2011.09.015.949

url: http : / / dx . doi . org / 10 . 1016 / j .950

neuroimage.2011.09.015.951

[23] Agah Karakuzu et al. “NeuroLibre: A pre-952

print server for full-fledged reproducible neur-953

oscience”. In: (2022).954

[24] Giuliano Maciocci, Michael Aufreiter and955

Nokome Bentley. “Introducing eLife’s first com-956

putationally reproducible article”. In: editorial957

(Feb. 2019). url: https : / / elifesciences .958

org / labs / ad58f08d / introducing - elife -959

s - first - computationally - reproducible -960

article.961

[25] Camille Maumet et al. “Sharing brain mapping962

statistical results with the neuroimaging data963

model”. In: Scientific Data 3.1 (Dec. 2016).964

issn: 2052-4463. doi: 10.1038/sdata.2016.965

102. url: http : / / dx . doi . org / 10 . 1038 /966

sdata.2016.102.967

[26] Chet Ramey. “What’s GNU: Bash-The GNU968

Shell”. In: Linux Journal 1994.4es (1994), 13–969

es.970

[27] Richard Stallman. Free software, free soci- 971

ety: Selected essays of Richard M. Stall- 972

man. Free Software Foundation, 2002. isbn: 973

1882114981. 974

Supplementary 975

Below, we include the full article difference view, 976

from which showcase excerpts in the article body are 977

sourced. 978

2024-01-19 Page 13 of 34

https://doi.org/10.1101/2020.04.03.023648
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648.full.pdf
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648.full.pdf
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648.full.pdf
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648.full.pdf
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648.full.pdf
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648
https://www.biorxiv.org/content/early/2020/04/04/2020.04.03.023648
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.3236930
https://doi.org/10.5281/zenodo.2545838
https://doi.org/10.5281/zenodo.2545838
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.1016/j.neuroimage.2021.118386
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.8214739
https://doi.org/10.5281/zenodo.3234918
https://doi.org/10.5281/zenodo.3234918
https://doi.org/10.5281/zenodo.3234918
https://doi.org/10.5281/zenodo.3234918
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://elifesciences.org/labs/ad58f08d/introducing-elife-s-first-computationally-reproducible-article
https://doi.org/10.1038/sdata.2016.102
https://doi.org/10.1038/sdata.2016.102
https://doi.org/10.1038/sdata.2016.102
http://dx.doi.org/10.1038/sdata.2016.102
http://dx.doi.org/10.1038/sdata.2016.102
http://dx.doi.org/10.1038/sdata.2016.102

Neuroimaging Article Reexecution and Reproduction Assesment System

979

2024-01-19 Page 14 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

980

2024-01-19 Page 15 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

981

2024-01-19 Page 16 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

982

2024-01-19 Page 17 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

983

2024-01-19 Page 18 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

984

2024-01-19 Page 19 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

985

2024-01-19 Page 20 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

986

2024-01-19 Page 21 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

987

2024-01-19 Page 22 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

988

2024-01-19 Page 23 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

989

2024-01-19 Page 24 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

990

2024-01-19 Page 25 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

991

2024-01-19 Page 26 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

992

2024-01-19 Page 27 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

993

2024-01-19 Page 28 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

994

2024-01-19 Page 29 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

995

2024-01-19 Page 30 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

996

2024-01-19 Page 31 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

997

2024-01-19 Page 32 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

998

2024-01-19 Page 33 of 34

Neuroimaging Article Reexecution and Reproduction Assesment System

999

2024-01-19 Page 34 of 34

	Background
	Reexecutable Research
	Data Analysis
	Software Dependency Management
	Software Dependencies
	Containers

	Results
	Repository Structure
	Resource Refinement
	Best Practice Guidelines
	Errors should be fatal more often than not.
	Avoid assuming or hard-coding absolute paths to resources.
	Avoid assuming a directory context for execution.
	Workflow granularity greatly benefits efficiency.
	Container image size should be kept small.
	Resources should be bundled into a superdataset.
	Containers should fit the scope of the underlying workflow steps.
	Do not write debug-relevant data inside the container.
	Scratch directories should be parameterized.
	Dependency versions inside container environments should be frozen as soon as feasible.

	Reproduction Quality

	Methods
	Data Acquisition
	Computing Environments
	Data Sources

	Discussion
	Reexecutability
	Reproducibility
	Challenges
	Outlook

	Supplementary

